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Preface 
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master's or master's degree thesis in technology written at a Swedish 
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The winner was announced on March 29 and was the master's thesis 
“Detection of pests in agriculture using machine learning” by Emma Olsson at 
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the thesis that has the greatest relevance, greatest originality and that it has 
been carried out with a good method. We believe that the result can be of 
great benefit to Swedish agriculture." The thesis was later converted into a 
report in our Agtech Innovation series. Here it is! Enjoy reading! 
 
Linköping 30 December 2024 
 
Per Frankelius 
Innovation manager, Agtech Sweden 
 
 
  



 



Abstract

Pest inventory of a field is a way of knowing when the thresholds for pest control
is reached. It is of increasing interest to use machine learning to automate this
process, however, many challenges arise with detection of small insects both in
traps and on plants.

This thesis investigates the prospects of developing an automatic warning sys-
tem for notifying a user of when certain pests are detected in a trap. For this, slid-
ing window with histogram of oriented gradients based support vector machine
were implemented. Trap detection with neural network models and a check size
function were tested for narrowing the detections down to pests of a certain size.
The results indicates that with further refinement and more training images this
approach might hold potential for fungus gnat and rape beetles.

Further, this thesis also investigates detection performance of Mask R-CNN
and YOLOv5 on different insects in fields for the purpose of automating the
data gathering process. The models showed promise for detection of rape bee-
tles. YOLOv5 also showed promise as a multi-class detector of different insects,
where sizes ranged from small rape beetles to larger bumblebees.
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1
Introduction

With warmer temperatures and milder autumns the occurrence of some pests
has increased. At the same time, beneficial insects have seen a decline for some
species due to climate change and the use of pesticides. When the beneficial
predators start to disappear there are less natural ways of keeping the pest pop-
ulations down. Understanding the full impact pests have on crops is an ongoing,
time-consuming research. The areas to investigate can be large while the pests
are small. Automation of insect detection and classification as well as a rough es-
timate to how severe the infestation is going to be, can be useful for agricultural
practices both in the organic and conventional fields.

1.1 Background

Use of pesticides in agriculture has been a frequently discussed topic for many
years. Both for its beneficial usage to stop infestations of pest from lowering the
harvest and also for its negative side effects on the biodiversity [7]. Especially
the declining wild bee populations have driven the agricultural sector to review
its use of many pesticides [7]. Organic farming is on the rise in response to the
negative effects of pesticides and the conventional agriculture sector is striving
to minimize the impact of pesticides on the surrounding area. Precision farming,
banning of some pesticides, compulsory courses before use and strict practices
are some examples of this. Some pests have also developed a resistance to some
pesticides, which makes it important to not apply pesticides too early or too often
[32]. When pesticides need to be used, it is best to apply when the pests are the
most vulnerable and before they can damage the crops. Also, some pests appear
only at corners or in spots across the fields at first, which makes it unnecessary to
apply pesticides to the whole field. It is thus beneficial to detect the infested areas
in which to apply pesticides with precision. A study made by Johanna Orsholm

1



2 1 Introduction

[32] showed that 85 % of the participants (113 oilseed farmers) would like to
use alternative methods for keeping pests under control instead of pesticides.
One such method is to favor beneficial insects that pray on pests. This is usually
done by avoiding to use pesticides when the crops bloom, avoid plowing after
harvesting some crops and to favor wild flowers near the fields. In order to apply
counter measures at the proper time farmers can enlist the help of pest advisors
to monitor the appearance of pests in the fields, or monitor it by themselves.
Depending on the pest this can involve visits to the fields and traps at varying
intensity, sometimes only once or twice in the beginning of cultivation and at
other times several visits a week. When the fields are many and the visits need to
be during many weeks, the task can be very time-consuming.

1.2 Aim

This research aims to explore solutions to alleviate the tasks of manually detect-
ing, classifying and counting pests in traps and in fields. The long-term aim is
to utilize this research for developing an automated method to study the corre-
lation of occurrence of pests with damage to plants and crops. This lies beyond
this project. This project will evaluate the different methods for automatic de-
tection and classification of different species of insects. Here, it is of interest to
investigate how to avoid wrongly classifying small black dots as insects, and what
precision of the classification that is obtained. If a method is proven to work with
enough precision, a probable sighting of a pest can be sent by the method to be
verified by an user and aid decisions for if pest control is needed.

1.3 Limitations

To gather images of all the pests that can cause damage to farmers is a task too
great for this project to undertake. This project will limit itself to a smaller num-
ber of pests which are fairly common to encounter in Swedish commercial agri-
culture. Since not all pests will be visible during the time period of this project,
focus will be on pests that appear during spring and summer. The gathering of
images of pests will take place mainly in the central part of Sweden, in regions
such as Västergötland and Östergötland. The number of traps that will be put
out is a limiting resource. The pests usually undergo several stages of evolution
in their life-cycle, from egg, to larva, to full grown insect and so on. Therefore,
this project will be limited to the fully grown pests. The amount of data is limited
and the insects in images are not labeled by an entomologist. Results should be
viewed with discretion.
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Related work

Detection along with classification of insects and calculation of threshold values
of pests have traditionally been done manually. As the interest of automating this
process has increased, so has the interest to use ML for detection and classifica-
tion of insects.

2.1 Pests management

Today there are services in Sweden that keep track of when the pests approach
certain areas. Notifications and information are sent out to subscribers through
"växtskyddsbrev" and posted on their website [32, 33]. This information is great
for farmers, but it does not alleviate the need for the farmers to do an inventory
of pests in their own fields. For example, the inventory of rape beetles should be
done 2-3 times a week from oilseed plants buds appearing until they turn into
flowers. Some farmers hire an agricultural- or plant protection consultant to per-
form the inventory for them instead. Preventing damage from certain pests can
be troublesome, both in terms of the time consumed when checking for infesta-
tions and the difficulty of knowing when to apply measures. [32]

2.2 Object detection and classification

Object classification and detection have been researched extensively in the field
of computer vision. Medium to large size objects are the most commonly re-
searched, while small size objects are researched more for medical, aerial and
satellite images. Classification and detection of humans, animals, plants and ob-
jects in different settings are popular research topics. Insect image classification
and detection have been researched to a degree, but not as extensively as other

3



4 2 Related work

topics.

2.2.1 Pest detection

Thenmozhi Kasinathan, et al. [22] proposes an approach for insect detection algo-
rithm that segments out the insect and chooses the contour of the insect, yielding
high detection accuracy. Weiguang Ding and Graham Taylor [13] instead used
a combination of convolutional neural network (CNN) and the sliding window
detection pipeline to detect moths in traps. After colour correction of the image,
a CNN predicts the likelihood that an image patch contains pests. The remain-
ing patches after filtering with Non-maximum Suppression (NMS), finding the
patches with higher probability than their neighbours, are the proposed detec-
tion. Best accuracy was achieved with patches of 21 x 21 for CNN, at object level
93.1 % and for image level 97.2%. [13]

Wenyong Li, et al. [27] states some of the challenges of pest detection such as
construction of large-scale datasets or multi-scale detection. Obtaining new im-
ages, relabeling and retraining a model when new classification tasks are added
can take a considerable amount of time. They mention data augmentation and do-
main adaptions as some proposed solutions for increasing efficiency. With multi-
scale pest detection, geometric details might disappear with deeper layers and in-
formation is contained at different layers. Therefore it is proposed to use anchor-
free networks and predictions with multi-layer features. Occlusion of pests can
cause a CNN to be less robust. The robustness could be increased by letting the
neural network (NN) learn parts of the insect in a specific layer. Since there is
a limited amount of hardware available out in the field, lightweight models are
preferable. Hence models that require GPU and high-power hardware resources
should be avoided. Feature pyramids are promising for solving the multi-scale
insect detection problem, either by fusing feature maps from different depths of
the network with cross-layer connections or by constructing a spatial pyramid
based on the receptive field’s parallel branches. [27]

2.2.2 Detection of small objects

The detection of middle sized and larger objects achieved better results with
deeper CNNs, however it has been shown that detection of small objects did not
perform as well due to loss of information in the deeper layers [14]. Some ob-
ject detection methods, such as Faster CNN (R-CNN), often utilize max-pooling
for obtaining feature maps that have rich semantic information while decreasing
the computational cost. However, the feature maps spatial resolution decrease
when using max-pooling which makes it hard to discover exact locations of small
objects. Even if high spatial resolution is retained in the feature map the model
will have too little semantic information for identifying small object in such cases.
[14]

In light of this, Yini Gao [14] proposes an approach for detection of golf balls,
with Deterministic networking (DetNet) and Feature Pyramid Network (FPN),
that allows for gaining better semantic information while keeping the feature
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map’s spatial resolution. The DetNet backbone takes inspiration from Residual
neural network (ResNet) structure and utilizes mostly dilated convolutional lay-
ers. They use the concept of dilated rate, which enables convolutional operations
to skip neurons. Yini Gao also mentions that You Only Look Once (YOLO) version
3 with Darknet-53 reaches impressive results when applied for object detection
on small objects. [14]

Chunfang Deng, et al. [12] recognizes the problem with detection of small
objects that are represented with very few pixels and proposes the Extended FPN
(EFPN). Reason being that feature coupling of various scales does not perform
well enough on small objects even if the scale-level detection has been greatly im-
proved for FPN. EFPN utilizes a pyramid level with very high resolution specif-
ically for detection of very small objects. EFPN is memory as well as computa-
tional efficient while yielding impressive results for small objects, in some cases
better than FPN. EFPN can use a Feature Texture Transfer (FTT), designed to
discard noise that otherwise would be carried along to next level and manages
to super-resolve features at the same time as finding credible regional details. A
special loss function called foreground-background-balanced loss function is intro-
duced. Designed to regulate differences in foreground and background, since
normal global loss will have trouble learning such small fractions of an image
well. This approach utilizes global reconstruction loss and positive patch loss on
both foreground and background to gain a higher feature quality. [12]

2.2.3 Pest classification

Thenmozhi Kasinathan, et al. [22] compares the classification approaches Artifi-
cial neural networks (ANN), k-nearest neighbor (KNN), support vector machine
(SVM), Naive Bayes (NB) and CNN on datasets with close-up images of insects.
The SVM classifier, utilizing nine shape features of the radial basis function (RBF)
kernel, reached an accuracy of 79.9% for 5 classes, but the accuracy decreased
rapidly to 71.8% when adding 4 more classes. The highest classification accuracy
was made with the CNN model that scored between 90-91.5% accuracy in the
range 9 to 24 classes. Noteworthy is that different approaches of machine learn-
ing algorithms performed best on different types of insects, where SVM gave the
most accuracy for winged insects such as fruit flies, and KNN performed better
for butterfly species. [22]

Wenyong Li, et al. [27] presents an overview of how well different methods
of classification perform for insects in field images. A fine-tuned ResNet-50 with
medium large dataset of approximately 2000-3000 images of paddy crop pests
achieved an accuracy of 95.01%, while tiny YOLOv3 reached an accuracy of 98%
for a dataset of 400 images of sticky traps. Faster R-CNN achieved 99 % accuracy
on 500 images and classification of cotton pests with 500 images using few-shot
training reached an accuracy of 95.4%. The quality of the dataset, regardless of
the amount of images, and the number of classes impacted on the performance.
Further, it is mentioned that describing image features using natural language
could be beneficial for CNN models. [27]

Dan Jeric Arcega Rustia, et al [38] proposes a semi-supervised learning ap-



6 2 Related work

proach for monitoring insects on a farm using a pseudo-labelling algorithm with
accuracy as high as 96.3%. This is promising for automated collection of training
data for the model.

Johanna Orsholm [33] investigates another promising approach for classifi-
cation of different insects using auditory features. Utilizing audio recordings for
machine learning is an approach that was tested for classification of wingbeat fre-
quencies to differentiate between pests and pollinators by earlier studies, reach-
ing an accuracy of 99 %, and similar results were obtained when using feature ex-
tractions in another study. To enable classification based on wingbeat frequency,
the frequency needs to differ from other insects in the vicinity and too great varia-
tions might cause difficulties. During experiments, the sound of wingbeats from
rape beetles and weevil were very similar, possibly making it hard to differenti-
ate. Collecting microphone based data could be complicated due to background
noise when this approach is applied in the field. A company called FaunaPho-
tonics takes another approach and use a light detection and ranging (LiDAR) to
capture the wingbeat frequency, and the LiDAR can also provide information
such as relations between body and wings even at long distances. [33]



3
Theory

Automatic detection and classification of pests can be realized with machine
learning or with approaches from the sub-field of machine learning called deep
learning. In this chapter, information about pollinators, pests, methods for cap-
turing pests and machine learning are introduced.

3.1 Insects

Some of the insects that appear in crops can be considered as either pests or
beneficial insects, where the latter pollinates flowers and in some cases regulate
pest populations. An insect considered to be a pest can also be a pollinator, and
vice versa [7]. Rape beetle is a pest that causes damage to young rape plants, but
while crawling over the flowers it also pollinates the plants during the blooming
season. In the Table 3.1 the only pollinator considered for detection is listed.

Table 3.1: Pollinator chart [7, 10]. ◦C is the temperature needed for a polli-
nator to emerge from various winter dwellings.

Image Pollinator Length mm Plants preferred ◦C
Bumblebee 7-24 Oilseed plants,

flowers
15

7



8 3 Theory

Figure 3.1: First appearance and re-appearance, as well as approximated pres-
ence during which can be seen in crops or traps [5].

3.1.1 Pest information

The prognosis for pests predicted arrival to the fields each year will vary due
to weather conditions. Figure 3.1 contains the likely first sightings of some of
the considered pests if weather conditions and temperatures agrees. Here, it is
mainly rape beetles and weevils that can be spotted early in rape fields. Table
3.2 contains information about the pests, their preferred crop and a grading for
how much of a threat the insect is. This measurement is based on how severe
the damage to the listed plants and crops could be if the conditions are favorable
[5, 6]. Further, it can be seen that for some pests the size and shape is similar. A
rape beetle can be hard to differentiate from flea beetles and weevils caught in
traps.

3.1.2 Capturing Pests

In general most winged pests can be captured with a yellow cup, even a sun-
bleached one, or a yellow or orange sticky trap. To protect pollinators a net can
be placed on the cup. Some specific cases relevant to this project are listed below.
See Figure 4.1 for images of the traps mentioned.

• Rape Beetle: Capture of this pest is usually done with a yellow cup filled
with water or a soap mixture. After one season in the field the sun-bleached
cup might no longer attract rape beetles. Place trap on the east or northeast
side of the field and on the same height as the plant or the flowers. For
capture using sticky traps, place with a tilt of 45◦ and facing out from the
field. [32, 33]

• Carrot root flies/Leafhopper: Can be captured using sticky traps, either
placed upright or tilted, close by the plant.

• Frit fly: Captured using a blue cup, placed directly in the ground.
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Table 3.2: Pest information chart [5, 6, 21, 31]. TL = Threat level. The grad-
ing range from a low threat, denoted 1, to higher threat, denoted 5. Some
pests are more common as well as a larger threat to certain crops depending
on the region. The regions are denoted (M) for the middle part of Sweden
and (S) for the south part of Sweden following crop names when applicable.
The * denotes those crops that could suffer the most damage. An extended
table can be found in the Appendix, see Table A.1.

Pest information chart
Image Pest Length

mm
TL Plants infested

Rape beetle 2-3 3 Oilseed plants
(spring and autumn
rape*)

Flea beetle 1,5-5 2 Oilseed plants,
cruciferous
vegetables

Weevil 2,5-3 1 Oilseed plants

Bean (seed) beetle 3-5 5 Legumes
(field beans*)

Carrot root flies 5-7 3 Carrots (S),
parsnip (M)

Leafhopper 2-5 5 Potatoes

Aphid 2-3 3 Spring wheat,
spring grain, oats

Fungus gnat 3-4 2 Seedlings, young
plants
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3.2 Classical machine learning methods

Relevant machine learning techniques for classification and object detection for
this project are presented in this section.

3.2.1 Configurations for machine learning

Common features used with machine learning techniques are introduced below.
Loss functions: For classification, a loss function computes a penalty based

on the difference between the true annotation and calculated prediction. This
penalty is then utilized for optimizing the model by alterations of the parameters.

For classifiers with large margin, like SVM, Hinge-Loss is a good consideration
that finds the maximum margin between the different classes [16]. The correct
class is denoted y, the ground truth, and is either 1 or -1. The predicted value
is ŷ, calculated with f (x), see (3.2) for SVM. Multi-class loss can be calculated as
"one versus rest". [8]

L(y, ŷ) = max(0, 1 − yŷ) (3.1)

Optimizers: A training algorithm is required to find good values of the param-
eters for the network. With the output given from the loss function, a gradient
descent optimization algorithm updates parameters of the model to reduce the
loss. A basic method is the stochastic gradient descent (SGD), where the weights
are either updated after running through the whole dataset or after each batch
from the dataset [16, 18].

Non-maximum Suppression: NMS is commonly used for pre-processing the
output to remove redundant bounding boxes, keeping the box with local maxi-
mum and boxes with less overlap than a set threshold, see Figure 3.2, [14]. If
an object lies such that its bounding box would significantly overlap another ob-
ject, NMS would suppress it by setting the detection score to 0. However, using
Softer-NMS, the detection could be kept [39]. Softer-NMS instead sets the score
as a function of the threshold, keeping the detection score if the overlap is less
and assigning a low score when the overlap is high.

Anchor boxes: Anchors are predefined bounding boxes tiled across an im-
age that allow for finding the probability of different object positions at different
scales across an image. The anchors then tie the original image locations to the
found features [4, 18]. Anchor box strategy, using k-means clustering algorithm,
can make a model more precise and stable [14].

3.2.2 Support vector machine

Support vector machine (SVM) solves classification problems through finding
a hyperplane that separates two classes [8]. The ideal hyperplane is found by
creating two parallel support vectors passing through the points closest to the
hyperplane from both classes and calculate the distance from the points to the
hyperplane, which is the margin that then will be maximized, see Figure 3.3. The
reason for using support vectors with maximum margins is to find a generalized
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NMS

Figure 3.2: Before and after applying NMS. The probability scores of the bound-
ing boxes are compared and removed until the one with the highest score remains.

x2

x1

Class 2

Class 1

Figure 3.3: A visual representation of how SVM divides 2 classes using a hyper-
plane, the red line, and two support vectors, the dotted lines. The equation 3.2 is
used for finding these lines.

model. For data that is not linearly separable, an extra dimension can be added
to find the hyperplane and then project it onto the original dimension. [8]

For a linear kernel, with an input vector X the equation for SVM is the follow-
ing, where b is the distance from the origin and the hyperplane’s normal vector
is represented with w. [8]

f (x) = wTX + b (3.2)

Radial basis function (RBF) kernel is a multiple kernel function that is often
used for non-linear data. This is practical for the cost function optimization to
work efficiently in higher dimensions while doing the transformation implicitly.
[8]

k(x1, x2) = exp(
−||x1 − x2||2

2σ2 ) (3.3)

Here the squared Euclidean distance between the feature vectors x1 and x2 is
||x1 − x2||2 and the hyperparameter σ controls the shape of the decision boundary,
used to limit the impact of a single example during training. A low number gives
a low impact reaching far and a high number gives a high impact close to the data
point. [8]
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3.2.3 Histogram of oriented gradients

Histogram of oriented gradients (HOG) uses the structure or shape of an object
to describe the features and is used for object detection [25]. It holds similarities
to other models such as Canny edge detector, since it involves gradient computa-
tion. The difference is that HOG uses both angle and magnitude for generating
histograms, with a dense grid of cells and normalization of overlapping local con-
trast which leads to better accuracy. When training a HOG feature dependent
model, the training set should contain positive images with the object of interest
and negative images with anything but the object. [25]

HOG approaches the problem cell for cell to find what is commonly called
the HOG descriptor for an image [30]. After converting the image into grey-scale,
normalizing the images and finding each pixels gradient, the image is split up in
cells, also called spatial regions. Per cell, a local histogram is computed before
combining cells into bigger blocks. Setting the number of pixels in the cells to a
higher number gives a weaker HOG than setting to a low number, same with the
number of cells in a block and the number of bins consisting of a set number of
degrees. The number of bins is connected to the gradient vector computation of
change in direction, the angle, also known as the orientations of the cells pixels.
[30]

3.2.4 Sliding window

A sliding window approach for images utilizes a rectangle of fixed dimensions
that is moved a set distance each time across the image left to right, as well as
from top to bottom, see Figure 3.4, [13, 26]. An image classifier can then be
applied to each of these small window regions and by combining sliding window
with image pyramids objects of different scale can be detected. The size of the
window should fit the whole object that is to be detected. It is best if the window
fits tightly around it, since if the window is too large or too small the object might
not be detected properly. The speed of a sliding window approach will vary with
the specification of the image pyramid, if it is used, as well as with the size of
the rectangle and the image. When sliding window is used with a detection or
classification model, such as a SVM trained with HOG feature extracted images,
the window size should be the same dimension as the training images. [13]

Figure 3.4: Example of sliding window on image.
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3.3 Neural network based machine learning

Neural network (NN) is a model used in machine learning. It has a loose equiva-
lent to a biological brain, the neurons of a NN are computational nodes connected
to one another and can forward signals as transmitted over synapses. Improve-
ment and extensions to NNs have been done during the years since the first NN
was presented, and the development is an ongoing process.

3.3.1 Neural network configurations

In this chapter follows some concepts for configuring a NN. To get the desired
behaviour from a NN the optimizers, activation and loss functions need to be
configured.

Transfer learning: Transfer learning removes the need for a large dataset,
without losing the generalization or infringe the performance. Reusing the infor-
mation from a previously trained model allows the training process to converge
faster towards minimum without needing more annotated images. Two common
approaches are to either fine tune the whole network or to fine tune only a se-
lection of layers with the weights of the earlier layers frozen [14]. Pre-trained
weights can be obtained from training on big datasets such as Common Objects
in Context (COCO) [28].

Activation function: Activation functions are non-linear functions that de-
fine the output of a neuron through a function of the input x. Rectified linear
units (ReLU), f (x) = max(0, x), have been proven to improve the optimization
speed, outperforming both sigmoid and tanh activation functions. [16]

The activation function softmax is often used to find the probability estima-
tion of an object belonging to the different classes, the predicted probability Q.
The class label is denoted y, known as true class or ground label for the input x.
Before normalization, the ŷ is referred as a latent variable. When using one-hot
encoding the y is a vector with size n, each object will have a known class label
set to 1 and 0 for the rest. [16]

Softmax = Q(ŷ) =
exp(ŷi)

Σn
j=1 exp(yj )

(3.4)

Loss functions: Used with softmax for multi-class classification problems,
cross-entropy calculates the loss through distance between two probability distri-
butions, for one prediction, in order to optimize the model [8].

H(y, Q) = −ΣN
i=1yi log(Q(ŷi)) (3.5)

Binary cross-entropy, a binary version of (3.5) also referred to as the log loss
function Lcls, gives an indication of how close the prediction is to the ground
truth for one class as follows [15, 42]. Here the N instead represents only two
classes.

Lcls = − 1
N

ΣN
i=1[yi log ŷi + (1 − yi) log(1 − ŷi)] (3.6)
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A variation of (3.6) is the average binary cross-entropy loss, Lmask , and is the loss
function for segmentation mask that utilizes per-pixel sigmoid [18, 41, 42]. The
i is extended to the cell (i, j), ŷ = ŷk with k-th mask and N is replaced with the
dimension of the mask m × m, giving a size of Km2 on the whole output with K
classes. Both Lmask and Lbox, see (3.8), are not classification losses.

Lmask = − 1
m2 Σ1≤i,j≤m[yij logŷ

k
ij + (1 − yij )log(1 − ŷkij )] (3.7)

Localization loss calculates the penalty based on the networks ability to cor-
rectly locate an object, comparing the predicted bounding boxes with the ground
truth. Smooth L1 localization loss, as shown in (3.8), is less affected by outliers
and good for avoiding overfitting [15]. Also referred to as Lbox. The input x is the
offset values for width, height and positions of (x, y) of the box center.

Lbox =
{

0.5x2 if |x| < 1,
|x| − 0.5 otherwise.

(3.8)

Classification loss and localization loss are often combined for object detec-
tion problems. Mask R-CNN is such a model, calculating the loss with L = Lcls
+ Lmask + Lbox, due to optimizing results for instance segmentation. There is no
competition between classes during mask generation with Lmask , as opposed to
the combination of multinomial cross-entropy loss and per-pixel softmax. The mask
is generated for each class and each Region of Interest (ROI). [15, 18]

Optimizers: The SGD explained in Section 3.2.1 can be implemented using
early stopping in order to stop the optimization process as the performance no
longer improves [16, 18]. Adaptive Moment Estimation (Adam) is an improved
algorithm built on SGD [24]. In Adam the adaptive learning rate for each pa-
rameter is adjusted in response to changes calculated on the first-order gradients
[24]. The vanishing gradient problem is common for small object detection with
NNs. It can be dealt with using Batch Normalization (BN). BN first normalizes
and zero-centers the input before each layer. [14]

3.3.2 Convolutional neural network

As mentioned in Section 2.2.3, the CNN architecture scored high accuracy for
many classes and it is a foundation for improved versions for classification and de-
tection problems, such as Mask R-CNN [22]. The architecture generally adapted
for CNN can be seen in Figure 3.5, [23]. Following the input layer of a CNN is
hidden layers that alternates between convolution and subsampling layers [23].

A convolution operation is one of the basic principles of a CNN, and a convo-
lutional layer is constructed with several convolutional kernels. A kernel consist-
ing of a matrix acts as a filter and slides over the image in a similar manner as to
a sliding window, see Figure 3.4, to generate a filtered output. The output and
the image are then matched, retaining the information that is found matching as
the output of the convolution. The kernel’s matrix contains the corresponding
weights of the NN after being trained for recognizing certain features, such as
edges, pixel differences for sharpening and many more. [16]
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Figure 3.5: CNN’s general structure.

Pooling, applied following a convolutional layer, uses sub-sampling on the
feature maps to reduce the computational cost through decreasing the amount
of connections in between convolutional layers. In addition, the use of pooling
can reduce overfitting which creates a more generalized model. Max-, average-
and stride pooling are commonly used. Padding, such as zero-padding, is used
to avoid losing information about the image’s corners when using filters as well
as avoiding the image from decreasing in size after a convolution is applied. [16]

3.3.3 Feature pyramid network

Tsung-Yi Lin et al. [29] proposed the FPN that utilizes predictions from feature
maps at different depths of the pyramid for a more generic feature extraction.
The general structure of FPN has bottom-up paths connected laterally with top-
down paths [29]. Each pyramid level of both paths can consist of several feature
maps of the same resolution. The FPN can with the lateral connections combine
both the low and the high spatial resolution feature maps through upsampling,
retaining the rich semantic information as well as having both the current and
the deeper stages features to base predictions on [14]. This while being faster
than a feature pyramid and more accurate than single feature map or pyramidal
feature hierarchy. An extension of FPN, EFPN, includes object detection [12].

3.3.4 Residual neural network

ResNet was developed in response to the vanishing gradient problem, see Sec-
tion 3.3.1, that arises for very deep CNN’s during backpropagation [17]. As a
minimum is sought with the loss function during training a too large amount of
layers will make the gradient shrink and eventually disappear, causing the opti-
mization to stop prematurely. ResNet retains the gradient by generating multiple
layers that are initially skipped in favor of reusing the previous layer’s activation
functions and expands the “residual” convolutional layers during re-training to
investigate features that a shallow CNN architecture would have overlooked. Fur-
thermore, the architecture of ResNet allows for more parameters. [17]

A simple ResNet backbone structure with implemented FPN would have down
sampling bottom-up paths latterly connected to the up sampling top-down path
[17, 29]. The up and down sampling is a factor 2, where the down sampling
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uses stride and the up sampling can be done with nearest neighbor. Stride is the
amount of pixels that a kernel is moved across the image. The last residual blocks
(C) output of each level except the first in the bottom-up path, C2-C4, is added
latterly to the corresponding output of each level (M) in the top-down path, M4-
M2, after undergoing a 1x1 convolution layer. The M5 is the C5 after applying
a 1x1 convolution layer. The input P5-P2 to the rest of the NN, such as Mask
R-CNN, is the final feature map after applying a 3x3 convolution to the merged
output of each level. [17, 29]

Residual blocks, commonly called skip connections, are important building
blocks of ResNet that will not cause added computational cost and retains essen-
tial features to the final layers. The intermediate input x is added to the convolu-
tional blocks output F(x) of the previous layers. [17]

3.3.5 Mask R-CNN

Mask R-CNN is an extended version of Faster R-CNN created upon a CNN struc-
ture [39]. The general structure of Mask R-CNN can be seen in Figure 3.6 [18].
Mask R-CNN uses instance segmentation, that annotates each pixel in an image
to a class while keeping localization information, which allows for counting in-
stances of separate objects belonging to the same class [11]. Region proposals are
generated after scanning the image and top-down FPN extracts semantic feature
maps from the candidate object boundary boxes proposals. Anchors are used
to tie the original image locations to the features found by RPN [4, 18]. The
proposals are then classified and the bounding boxes are refined and pixel level
masks applied. ROI align is used for extraction of relevant areas of feature maps.
ResNet-50, ResNet-101 and MobilNet are all possible to be used as a backbone
[39]. As mentioned in Section 2.2.3, ResNet-50 did achieve high accuracy for
insect classification [27].

One implementation of Mask R-CNN is Matterports [4], which use a ResNet-
101 as backbone and a learning rate set to 0.001 for re-training the top layers of
the model. It uses transfer learning where weights previously are trained on a
COCO dataset [28]. It uses Softer-NMS and the structure of FPN is such that it
will extract feature maps from each layer, excluding the first layer [4].

Figure 3.6: Mask R-CNN network structure [18]. Fully connected (FC).
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3.3.6 You Only Look Once

As the name implies, each image is observed once to detect and classify objects
[36]. The first version of YOLO is fast, lightweight and straightforward. After
resizing, the input image passes through one convolutional network before out-
putting the detections. In contrast to sliding window and techniques using region
proposals that only sees part of an image at a time, YOLO sees the whole image
both during training and testing [36]. There are now improved versions of the
original adaptation of YOLO such as YOLOv5, [20], where the accuracy is signif-
icantly improved. Common backbones to use with YOLO implementations are
ResNet and DarkNet-53, and for certain applications, a detector head combining
YOLO with FPN and similar have been tried with state-of-the-art results. YOLO
can be used on images or video. [36, 38]

3.4 Performance measure

The three standard metrics accuracy, recall and precision will be used to evaluate
the classification model, and since the project uses unbalanced datasets the preci-
sion and recall are especially good to evaluate. Evaluation of accuracy alone does
not give a proper measurement regarding the effectiveness of the model.

P recision =
T P

T P + FP
(3.9)

Recall =
T P

T P + FN
(3.10)

Accuracy =
T P + T N

T P + T N + FP + FN
(3.11)

True Positives, False Positives, True Negatives and False Negatives describes
the outcome of classification predictions and are represented by TP, FP, TN and
FN respectively. The predicted outcome of a binary or multi-class classification
can then be visualized in a confusion matrix and for a good result the majority of
predictions should end up in the diagonal. To measure how good a classifier is of
an unbalanced dataset, a F1-score can be used. F1-score combines the outcome
of precision (P) and recall (R) for each class, one class at the time, which gives
that class a score that can be evaluated against the remaining classes.

F1 = 2
P ∗ R
P + R

(3.12)

Evaluation of the precision of bounding boxes can be done with the Intersec-
tion over Union (IOU), that uses the ground truth bounding box and the pre-
dicted bounding boxes for estimating the intersection [14].

IOU =
Region of Overlap
Region of Union

(3.13)

IOU can be used during training of a model to reward a heavy overlap of the
ground truth.





4
Gathering data

Below is an outline of the methods for gathering data used in this project. The
results will be presented and discussed, along with an overview of the databases.

4.1 Method of collecting data

There will be two types of images used in this project: Trap images and Field
images. See Figure 4.1 for an example image of each type.

• Trap images: These images will be of sticky traps or cup traps. The traps
are placed near crops prone to visits from pests, on the author´s home
farm and at other farms, agreeing to participate in the project. The images
will be collected with cameras facing the traps or be photographed during
regular visits. Many trap images and traps are also provided by advisors
(Jordbruksverket or private), and by previous Agtech 2030 project.

• Field images: The field images will be collected by manually taking pic-
tures of insects on plants when finding them. Some of the field images
collected are also intended for use in a pilot project in Agtech 2030 [31].

The gathering stage of Trap and Field images can be highly impacted by
weather conditions and the actual occurrence of the pests. It is required for the
pests to emerge from their various winter dwellings. For different pest this hap-
pens at different times as the temperature rises during the spring. The gathering
of images will begin in late March and continue until late August. For this project
Hunter 3G camera [1] will be used. The Hunter 3G has a 100 degrees field of view,
can save 12 MP on the SD card and is configured during this project to deliver
images through file transfer protocol (FTP) and e-mail with 1920*1440 pixels. A
M5stack Ov3660 [2] camera is evaluated during this project as well, supporting
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(a) Sticky trap. (b) Sticky trap 45◦. (c) Sticky trap.

(d) Cup trap. (e) Field image.

Figure 4.1: An example of each image type used in this project and where
a)-d) are a representation of the different type of traps used.

(a) Hunter 3G. (b) M5stack.

Figure 4.2: The cameras evaluated during this project.

66.5 degrees field of view and a resolution of 1600 x 1200 pixels. The cameras
are shown in Figure 4.2. Additional images will be captured with other cameras
and mobile cameras, as well as with a built-in Macro lens at 5 MP.

4.2 Results

Result of the data collection and the camera evaluation are presented below.
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4.2.1 Data collection

An overview of how the traps were placed in fields can be seen in Figure 4.3. The
timeline for collection of trap images and field images along with information
about in what type of crops they were collected in are presented in Figure 4.4.
One Hunter 3G camera was placed in an autumn rapeseed field during March-
May and another was placed between a spring rapeseed field and an autumn
rapeseed field, during April-June.

A summary of the databases used for training that were collected and final-
ized can be seen in Table 4.1. Examples of the crop images in these are presented
in Figure 4.5 and Figure A.1. A large portion of the images collected did not get
included for various of reasons. For fritfly, an early consideration, the number of
possible images were less than 3 after collection. 4 databases for trap detections
were also created within the project, were two include 4 classes.

Table 4.1: Training database summary for insects. N is the total number of
images. BB stands for bounding box and P is polygon in the dataset names.
BB3 is one dataset consisting of 6 insect types. The resolutions of the indi-
vidual images might differ, ≥ or > indicating if more images of a certain type.
* mark that geometric transformation has been performed.

Trap cropped insect N Resolution
Rape beetle H3G 1136* 20x20 to 25x25 px
Negative images H3G 2362 20x20 to 25x25 px
Rape beetle 474 50x50 px
Rape beetle 3792* 50x50 px
Flea beetle 162 50x50 px
Weevil 285 50x50 px
Decomposed/Winged rape beetle 504* 50x50 px
Negative images, cup trap 5380 50x50 px
Fungus gnat 402* 112x112 px
Negative images, sticky trap 728 112x112 px

Field image N* Resolution
P1_Rape beetle 120 Macro 5 MP ≥ 2.1 MP, 64 MP
P2_Rape beetle 720 Macro 5 MP, 2.1 MP ≥ 64 MP
BB2_Rape beetle 707 Macro 5 MP, 2.1 MP ≥ 64 MP
BB1_Rape beetle/BB3, Rape beetle 120 Macro 5 MP ≥ 2.1 MP, 64 MP
BB3, Weevil 102 2.1 MP ≥ 64 MP, Macro 5 MP
BB3, Pea leaf weevil 106 Macro 5 MP ≥ 64 MP
BB3, Bean (seed) beetle 114 Macro 5 MP
BB3, Aphid 120 Macro 5 MP ≥ 64 MP
BB3, Bumblebee 120 2.1 MP, 64 MP
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(a) Carrots. (b) Oats. (c) Field beans.

(d) Spring & au-
tumn rapeseed.

(e)
Autumn rapeseed.

Figure 4.3: Example of trap placement in fields.

Figure 4.4: Data collection timeline in different crops in Västra Götaland,
where field images FI. The cup trap images provided by Jordbruksverket
placed in autumn and spring rapeseed fields were collected from April until
June in Östergötland. *The parsnips sticky traps were in Östergötland, mon-
itored with a camera and managed by an advisor and Agtech 2030.
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(a)
Decomposed/Winged
rape beetles.

(b) Rape beetles.

Figure 4.5: Example of positive images in the datasets for rape beetles. The
differences between these possible rape beetles are large enough to effect the
accuracy of a model and the results when trying to sort the insects based
on size. Most rape beetles were too difficult to identify when on the side
and were mostly left out from training set since sometimes very similar to
flea beetles or unknown beetle types. Some of the crops in a)-b) are taken
from original images provided by Jordbruksverket. See Figure A.1 for more
examples from the datasets.

(a)
Hunter 3G.

(b)
3468x4624.

(c) M5stack. (d)
3468x4624.

Figure 4.6: Images of Hunter 3G and M5stack alongside mobile images of
same type of trap. The images are cropped, original resolution in pixels
mentioned.

4.2.2 Cameras

An overview of the evaluated cameras visual image resolution from the collection
of data is presented in Figure 4.6. M5stack images are not used in any datasets,
see discussion in Section 4.3.2.
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4.3 Discussions

In this section the results of data collection and camera evaluation are discussed.

4.3.1 Data collection

It was not a trivial task to find images of relevant pests in large quantities, good
quality and correctly identified, as well as allowed for commercial use. Further-
more, the image conditions would rarely match the purpose. Pests with very few
images, found or collected, were no longer considered. The collection of data
went well for some pests, e.g., rape beetle. This were due to great advice and help
from pest advisors, a large portion of luck during trap and field collections and
thanks to Jordbruksverket that provided traps with fungus gnat and images of
pests in cup traps. The few online insect images found became redundant and a
database gathered within the project was pursued. More time than intended was
spent on gathering data and redoing databases, since the learning curve of how
to collect properly and what kind of images could be used was steep. It was not
trivial to learn how to annotate the pests or how to find them. Lastly, the amount
of time needed to manage traps and do pest inventory was misjudged.

4.3.2 Camera evaluation

The Hunter 3G cameras durable design, paired with long-life batteries, worked
well in this project. The transferred images resolution is a bottleneck, but much
information about the present state of the trap were provided with the images
sent every day. The resolution could be enough for detection based on size. For
example, in Figure 4.6 a) a possible weevil is in the top center, and some possible
rape beetles are in the right bottom corner. However, details needed for classifi-
cation of similar sized insect were not seen consistently for small insects.

The M5stack Ov3660 camera is suitable for similar tasks, with resolution
enough for detection of insects based on size, but the resolution did not offer the
option to differentiate well between small insects, see Figure 4.6. Smartphone
cameras, the built-in Macro lens and system cameras provided more details.
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Pre-processing data

5.1 Method of pre-processing data

To be able to utilize the gathered data for training and testing of the machine
learning model the data must first be pre-processed. Since the detection will re-
volve around small objects, placing the bounding box consistently close around
the object will help to avoid confusing the model [14]. Open software Makesense
is used for manually annotating field images [3]. It is free, and can be used di-
rectly in the browser.

The datasets are then divided into training and test sets, along with an addi-
tional validation set for tuning hyperparameters of SVM model. All test sets are
set aside manually before any training, and are not present in Table 4.1. Most
images used for testing are captured at a date later than when the last training
image used for that model was captured. The validation set is a small portion
removed from the test set. The amount of test images are low due to limited
amount of images were the pests are present as well as visible enough, while the
number of insects per image are high in some cases. Original mobile cup images
containing visible rape beetles amount to less than 90 images, and images set
aside for test are approx. 25 %. In Figure 6.3, the models were evaluated on 62
cropped images for Hunter 3G models, and the other rape beetle models were
tested on 772 cropped images.

To improve learning and detection a number of techniques can be applied.
Firstly, data augmentation in the form of geometric transformations will be used
to combat overfitting that otherwise is prone to happen due to the smaller size of
these datasets. Secondly, in order to combat false positives generated by glare in
images, the glare in training images could be removed.

25



26 5 Pre-processing data

5.2 Results

Annotations with polygons or bounding boxes of very occluded pests or pests
out of focus increased false detections. Geometric transformations, flipping and
rotation of the images, were performed for certain insects depending on desired
dataset composition.

False detections due to glare occurred mostly in rectangle sticky trap images
due to the material being prone to reflecting light, and also since the traps are
commonly wrapped in plastic to handle more easily. For cups containing water
the amount of false detections due to glare depended on the sunlight, use of flash
or amount of bubbles. After removal of glare, false detections were caused by
marks left by the removal.

5.3 Discussions

Annotation workflow with Makesene worked well. The placement and size of
the bounding boxes or polygons were chosen to include invisible parts of pests
to a degree and excluding pests too occluded or out of focus after initial results.
For the rectangular sticky trap the placement of the bounding box had to be very
large whenever the trap was not placed straight in the image, including more
background, in contrast to the placement of the polygon that were placed along
the edges.

Data augmentation with geometric transformations allowed for the models to
be more general, have a more even distribution between classes and have a better
accuracy. For insects such as weevils or bean (seed) beetles the dataset for field
images would have been too small to include for detections alongside other pests
for YOLOv5 without geometric transformations. Same held true for cropped trap
images of fungus gnat as well as Hunter 3G rape beetles and mobile rape beetles.
The geometric transformations helped improve accuracy in these cases.

SVM had a tendency of getting false detections due to both glare and marks
left behind after removal of glare. Either inclusion of negative patches containing
glare or muted areas were needed, and since some images have low amount of
glare the removal of glare was deemed unnecessary. Photographing the traps in
suitable conditions would be the best way to combat glare.
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Classification and Detection

In this chapter the method, results and discussions of classification and detection
of insects and traps are presented.

6.1 Method of detection and classification of insects

In this section the approaches tested for detection and classification of insects in
trap or field images are presented as well as of the traps themselves.

6.1.1 Detection and classification of insects in traps

For testing detection and classification of insects in trap images the sliding win-
dow method will be implemented, with the option of image pyramids for improv-
ing the detection. This approach is inspired by [22], [13] and [37]. The insects of
interest in this project can be quite small, represented by only a few pixels, and in
one trap image there can be several breeds of insects similar in shape, colour and
size. A classifier will be applied to the detection window, checking each detection
to see if it passes both the size check and the set confidence level or probability.

• SVM & HOG Denoted SWSH for short, this approach will use the SVM
model, Scikit [35], for classification. The loss function is Hinge-Loss, as
shown in (3.1). The SVM will be trained with a linear or a RBF kernel
on HOG feature extracted images with both positive and negative images,
see Table 6.1 for HOG settings. In order to suppress bounding boxes NMS
will be used, with a threshold of 0.1.

• CNN A CNN model can be used as classifier instead on the window. This
option is more preferable if many classes are to be detected at once.
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Table 6.1: Values for HOG feature extraction, see Section 3.2.3.

Orientations Pixels per cell Cells per block Threshold
9 8, 8 2, 2 .3

• Check size The original image is cropped to the detection and uses Otsu
method [34] to threshold the gray-scale image. Then check if detection is
within threshold for density of white pixels, the area, the width and height
as well as the difference between width and height. Input images size, trap
type and, if checked, trap size can be used to automatically change the
thresholds.

The approach can be combined with trap detection, see Section 6.1.2. For
Hunter 3G images, the SWSH will always stop the computation at the bottom
white bar. A flowchart of the method can be seen in Figure 6.1.

Figure 6.1: Sliding window classification and detection pipeline, here with
SWSH. CL is confidence level. After the trap classification step, see Section 6.1.2,
the size of the image is checked for choosing the settings for size check. When
used on training images the SWSH crops its own new training images, allowing
to train on the models weaknesses in regards to false detections.

Figure 6.2: Flow of trap detection. Three paths are possible. As standard set-
ting, the SVM trap detection will always output the trap type. Mask R-CNN and
YOLOv5 can also output the size of the trap and crop to detection. The more sta-
ble option out of 2 and 3 will be kept in final implementation.
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6.1.2 Trap detection

Automatic classification and detection of traps, and lack of one, will be tested.
A chart of the trap detection is in the Figure 6.2. This allows for switching be-
tween methods for detection of insects in field images or insects captured in traps,
switching between settings depending on what kind of trap. Automatic detection
of traps will be tested or implemented to differentiate traps from background in
order to extract only the trap and for cropping the image to detection when ap-
plicable. The purpose is to avoid having too much background in which it is
possible to get multiple wrong detections. Also, cropping the image can decrease
some of the detection time needed for SWSH method.

• Mask R-CNN: Tested and implemented to detect traps for removing back-
ground and cropping image to detection. Since the generated mask can be
uneven in edges when training is not enough, a solution could be to dilate
the mask just enough to be sure it would cover the area of interest without
adding too much background. This implementation will build on Matter-
ports [4] implementation of the Mask R-CNN, see Section 3.3.5, as well as
some of the modifications as by Sergio Canu’s tutorial for training and test-
ing with custom datasets [9]. As described in Section 6.1.1, this can be used
in the SWSH method and the code was modified for this.

• SVM: Tested for automatic classification of traps in order to use with other
models. Implemented with the SWSH method, see Section 6.1.1.

• YOLOv5: Tested for detection of traps in order to crop image to detection.
Also tested for automatic classification of traps for a future program as with
SVM. The training and testing is done with the model YOLOv5 created by
Ultralytics [20].

6.1.3 Detection of insects in field images

Two models will be tested for their performance on field images, with 5MP Macro
images, 2.1 MP video captured images and on 64MP images. Depending on in-
sect, there might only be one type of resolution used. Below are the two models
that will be tested for detection of insects. Both models are used without extra
modifications except those needed for training with custom datasets or display-
ing testing images.

• Mask R-CNN: Tested for its detection performance. Trained in same man-
ner as for trap detection, see Section 6.1.2.

• YOLOv5: Suitable for images and video, real-time applications and some
edge devices. Therefore tested for future prospects of using it as a tool to
help automating the collection of images containing insects as well as its
performance as a classifier and detector for field use. If used on a trap,
meant to detect new additions to the trap. The model was trained in same
manner as for trap detection, see Section 6.1.2.



30 6 Classification and Detection

Table 6.2: Performance of trap classification and detection. The number
of images tested is N and A is the accuracy. A failed result for Mask R-CNN
means no trap detected or that the mask did not cover the whole area of
interest. If the area covered was slightly too small it is marked a Pass *. The
4 different classes are cup, field, square and rectangle sticky. See Figure A.2
for results with Mask R-CNN.

Model N Pass Pass *
Mask R-CNN, 2 classes, incl. H3G Cup 22 11 8

Model N Pass A
SVM, 4 classes 43 40 0.93
YOLOv5, 2 classes incl. H3G Cup 9 9 1
YOLOv5, 4 classes incl. H3G 16 15 0.94

6.2 Results

The results for models applied for classification and detection on images are pre-
sented in this section. The results for models are divided into two cases, one for
trap images and one for field images. Detection results done on images sent from
Hunter 3G cameras will be marked H3G. Observe, as mention in Section 1.3, that
even if the true number of rape beetles in a cup trap is sometimes known for an
image, the annotations in this chapter most likely have mistakes in cup images
as well as in field images.

6.2.1 Trap images classification and detection

The different trap detection methods were tested in order to choose which to use
during testing with sliding window, see Table 6.2. Both SVM and YOLOv5 were
chosen to be used for implementation.

Two Scikit-learn [35] methods for training a SVM model were tested on a vali-
dation set, a LinearSVC and a GridSearch, which finds the best hyperparameters
for SVM. Regarding the mobile crop images, the GridSearch was done with a sub-
set of the negative images. The best hyperparameters found through GridSearch
were a RBF kernel, see Section 3.2.2, with a C of 100 and gamma of 0.0001. C
is used to regulate the margin against the classification accuracy and gamma is
equivalent to 1

2σ2 . This RBF kernel did however give an accuracy of 0% for H3G
images, and instead the LinearSVC was chosen.

The models were then retrained with different compositions of the datasets
and tested to find which combination of positive and negative images to use, see
Figure 6.3. Geometric transformation were applied to all positive rape beetle
images. For the amount of cropped images in each category, see Table 4.1. For
the RBF kernel, the addition of more negative images such as negative weevils in-
creases the accuracy although decreasing the recall. Adding more positive images
such as decomposed rape beetles or in the case of H3G with LinearSVC additional
mobile or camera rape beetles had the opposite effect.
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Figure 6.3: Classification metrics from rape beetle test on cropped images,
62 images for H3G and 772 images otherwise. Negative is denoted N, P is
positive and M_R indicates that the original mobile and camera rape beetle
images were included. W&F stands for weevil and flea beetles, W&D stands
for winged and decomposed rape beetles.

Table 6.3: SWSH settings test on RBF model for rape beetles. Step size is
the amount of pixels that the sliding window will travel each iteration.

Settings Accuracy Precision Recall
Nothing 0.19 0.20 0.73
YOLOv5 0.21 0.22 0.73
YOLOv5 & size check settings 0.32 0.37 0.73
YOLOv5 & YOLOv5 size check 0.32 0.37 0.73

Size check settings
Area Density Width/Height |w − h| Step Size
110<a<420 0.07<d<0.25 17<w/h<31 diff<22 7

The RBF model trained on only the negative images along with the geometric
transformed rape beetle images was chosen. This model was then tested with
SWSH on 4 test images, set aside for seeing the impact of different settings, see
Table 6.3. When YOLOv5 is combined with size check, the settings are adjusted
based on the trap size found with YOLOv5.

The time for completing the SWSH for one cup trap image was approximate
5 min using LinearSVC and around 30 min using RBF kernel. For H3G images
however, the SWSH took only seconds or less than 2 min. The time would also be
less with a larger step size, but so would also the detections.
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(a) 36 known rape beetles, however only the
clearly visible rape beetles will be included as FN.
The detections are 15 TP, 11 FN and 9 FP.

(b) Confusion matrix.

Figure 6.4: Results from the test with SWSH on the 15 testimages. TP are the
green boxes, and FP are red and FN are purple. Original image a) provided
by Jordbruksverket.

Rape beetle detection using SWSH and a model trained on RBF kernel with
1.0 CL and a loose YOLOv5 size check was tested on 15 mobile and camera cup
trap test images, see Figure 6.4. 5 of these images had no rape beetles, and the
two with no false detections were included as TN. This model was trained only
on negative images and geometric transformed rape beetles. The reason for not
including negative flea beetles and weevils is that this removes many true detec-
tions, although it would greatly improve the accuracy. As can be seen in Figure
6.4 and Figure 6.5 a), many false detections are due to flea beetles and also not
identified beetles on their side, of these some in the test images might actually
be rape beetles. The inclusion of weevil and flea beetles as negative images gives
the same accuracy of 46% as without on 4 of the selected test images. The FP
get less the more flea beetles and weevils that are added. Without geometric
transformations the precision increased with 3% from 56% and with geometric
transformations it increased to 75%, however with a much lower recall.

Rape beetle H3G detection using SWSH, with a model trained using a Lin-
earSVC kernel, was tested on 4 cup trap test images, see Figure 6.6. Trained
on negative H3G images and on geometric transformed rape beetle H3G images.
The settings used were a YOLOv5 size check, step size 7 and 0.1 CL. Here the
width w and height h check are approximately between |5 < w/h < 12|, and the
difference check is |w − h| < 7.
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(a) False detections.

(b) Missed and true detections.

Figure 6.5: Some zoom and crops of the detections in the test images. Green
boxes are TP, and the red are FP and FN are purple. Original images pro-
vided by Jordbruksverket.

(a) H3G test image, with 12 TP, 4 FP and 2 FN. (b) Confusion matrix.

Figure 6.6: Test with 4 H3G images using SWSH method on cup traps. Green
boxes marks TP, and FP red and FN purple. Some FN and FP might be
missed. No TN were included for this small test.

With a step size of 3 and adding the mobile and camera rape beetles, not
geometric transformed, the model increased the recall to 89%, at the expense of
the precision that dropped to 40%.
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Fungus gnat detection on rectangular sticky traps was also tested using SWSH
method, see Figure 6.7 b) - 6.8. Geometric transformations on fungus gnat. With
1.0 CL, 112 WS, a stepsize of 30 and performed on 5 test images, the LinearSVC
gave 7 TP, 10 FP, 5 FN resulting in an accuracy of 32% and precision 41%. The
size check used for this had the settings 710<area<3100 and 0.055<density<0.26.

(a) Classification metrics on cropped
test images for LinearSVC and CNN.

(b) LinearSVC. 2 TP, 1 FP and 1 FN.

Figure 6.7: The CNN in a) were trained on a subset of the LinearSVC training
images. In b) one of the detection results of fungus gnat using SWSH method
can be seen. TP are marked with the green boxes, and FP with red and FN
with purple.

(a) (b) (c)

Figure 6.8: From the SWSH test, some examples of true detections in a),
missed detections in b) as well as false detections in c).
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6.2.2 Field images classification and detection

Detection of insects on plants or in empty yellow cups were tested with Mask
R-CNN and YOLOv5. Confidence level for YOLOv5 is 0.45. Missed detections
FN were included according to the annotation method, for P2_Rape beetle and
BB2_Rape beetle heavier cases of occlusion were included. The results on field
images can be seen in Table 6.4 and in Figure 6.9 and Figure 6.10. See transla-
tions of Swedish names in Table A.1. In Figure A.4 images from video tests with
YOLOv5 are presented.

Table 6.4: Performance comparison. See Table 4.1 for database. The accu-
racy is denoted (A), precision (P) and recall (R). The BB3 test have six classes;
rape beetles, pea leaf weevil, weevil, bean (seed) beetle, aphids and bumble-
bees.

Model N Insect TP TN FP FN A P R
Mask R-CNN 15 P1_Rape beetle 30 1 2 7 0.78 0.94 0.81
Mask R-CNN 17 P2_Rape beetle 29 1 15 14 0.51 0.66 0.67
YOLOv5 15 BB1_Rape beetle 31 1 2 6 0.8 0.94 0.84
YOLOv5 17 BB2_Rape beetle 38 1 6 5 0.78 0.86 0.88
YOLOv5 21 BB3, 6 classes 26 0 5 8 0.67 0.84 0.76

(a) P2_Rape beetle. (b) BB2_Rape beetle.

(c) P2_Rape beetle. (d) BB2_Rape beetle.

Figure 6.9: Result of detection of rape beetles on field images. In a)-b) both
models got 2 TP and the same FP (positioned at red dot in a) marked by
Mask R-CNN). c)-d) rotated. For same image in c) BB2_Rape beetle failed,
and for image in d) P2_Rape beetle got 1 TP and 1 FP instead.
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(a) Rape beetles, P1_Rape beetle,
[31].

(b) Rape beetles, BB1_Rape bee-
tle, [31].

(c) Pea leaf wee-
vil (AVirvel), BB3,
[31].

(d)
Been (seed) beetle,
BB3, [31].

(e) Aphids, BB3,
[31].

(f) Failed detection of
weevil marked with pur-
ple box, BB3.

(g) Bumblebee, BB3.

Figure 6.10: Result of detection on field images. In b) YOLOv5 outperformed
a) Mask R-CNN in detection of rape beetles.
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6.3 Discussions

In this section the outcome of the tests are discussed.

6.3.1 Trap images

The performance of insect detection and classification were impacted by a num-
ber of factors. The most influential factors are listed below.

1. Size of the insect in pixels.

2. Resolution of the insect.

3. Similarities between insects.

4. Occlusions and rotations of insect.

5. Amount of time since caught in trap.

6. Amount of insects caught.

7. Difference in the distance between camera and trap.

8. The amount of background texture inside and outside of trap.

9. Water in cup clear or not.

10. Colour of traps not consistent due to light conditions.

11. Regarding Hunter 3G images, weather conditions.

True for most false detections are that they become similar to a rape beetle
in grayscale and when cropped to the detection window. As seen in the results
in Figure 6.5, many false detections were caused by flea beetles and weevils due
to their similarities to rape beetles. Letters, such as text on bottles or Hunter 3G
information bar, see Figure A.3 a), in general often caused wrong detections along
with cup edges, bubbles, small yellow flies, wings or tips of larger flies bodies.

To help with the precision and removal of false detections a number of ap-
proaches were tried or considered. The ones found most promising are discussed
below.

• Size check of insect with threshold, with or without YOLOv5.

Density, width, height and area check of insect were most consistent and
accurate after using Otsu method to threshold the image. For cup images
this proved sometimes as effective in removing FP as using background
removal, as opposed to without, see Figure A.3. Fungus gnat often got stuck
on the black lines of sticky traps, see Figure 6.7 b), so removing FP of lines
with check size was complicated. The check for difference between width
and height gave the most impact when trying to detect only weevils. A
too strict check size could sort away insects too close to each other. Due to
rotations, the width and height check was not used to its full potential, left
for future improvement.
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• WS - insect to image ratio.

Too big or too small WS can cause loss of or false detections. A smaller WS
can increase detection of close insects, but would also miss the larger grown
insects. The WS size found to be effective for mobile or camera images with
rape beetle were 50 pixels, 23 pixels for Hunter 3G.

• Dataset composition - include or exclude variations of or similar insects.

Adding more flea beetles and weevils as negative patches lessened the amount
of wrong detections of these. However, due to the very similar shape, it
would always cause the models to detect less rape beetles. Similar, inclu-
sion of older or winged rape beetles increased true detection at the cost of
more wrong detections of flies and beetles. The beetles on the side should
be included in future datasets as negative or positive images after identi-
fication. Previous datasets tested before final test mostly did not contain
negative crops of beetles partly cut off or tip of flies bodies. Adding these re-
moved some of such false detections, however some rape beetle detections
were lost.

Knowing the real dimensions of the pests and the corresponding dimensions
in pixels allows for a size check threshold for an insect. This is helpful in achiev-
ing better accuracy and removing false detections. When the insect size in pixels
is unknown and the distance between camera and trap is not consistent, use of
a general threshold for check size increased performance. Finding the trap size
allows for more specific settings sorting away more false detections, however, it
needs to be more refined to not miss detections due to very strict settings. Size
check is useful for lessening the impact of data shortage. The models confidence
levels needs to be increased for better accuracy, for this more training images
would be needed. The results point towards adding a large amount of new wee-
vils and flea beetles to the negative images, with at least as many new rape beetles
to the positive images. The datasets of rape beetles were too small and not varied
enough to include the needed amount of negative images, regarding both H3G as
well as mobile and camera images.

The SWSH method could only analyze a small part of the image at the time.
One of the larger obstacles is detection of pests clustered close together with
other insects. For solving this problem, a machine learning method seeing larger
sections or the whole image at once might be of interest to test.

6.3.2 Field images

Similar to the case with trap images, the performance of insect detection and
wrong classification of small black dots was impacted by the resolution of the
images and by the distance between camera and insect. Insects with similar size
and colour to the rape beetle such as a small fly caused a false detection, but
larger flies did not. Young oil seed plants caused false detections due to holes in
leaves or shadows in similar size to the pest caused by the flower buds. Especially
for 2.1 MP images using Mask R-CNN, that proved more sensitive to differences
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in resolution. Both Mask R-CNN and YOLOv5 performed best with less inclusion
of occlusion, and Mask R-CNN performed best when few insects were present in
one image. The training images of very good clarity were not of enough quantity
to reach good polygons on every rape beetle for Mask R-CNN, causing missed
detections.

YOLOv5 was also tested briefly as a multi-class detector on images and on
video. As seen in the Table 6.4, the overall accuracy is not as high as the other
YOLOv5 models. Nevertheless, as seen in Figure 6.10 and in Figure A.4, most
of the insects could be detected well, as long as focus was kept, except for the
class weevil. In contrast to the class pea leaf weevils, the weevil class often had
large distance between camera and insect as well as two types of weevils with
different shape and colours included. For classes containing very similar and
high quality data the accuracy scored higher. Bumblebees could be detected at
varying distances.

It is worth investigating if the performance could increase for Mask R-CNN
and YOLOv5 if;

• Using pre-trained weights obtained from training on COCO datasets includ-
ing only small objects.

• Including background images, with and without insects not of interest, into
training.

• Increase the training images without occlusions.

• Using strictly one type of insect per class.

• Utilizing mostly one type of resolution and distance for smaller insects. Or,
including more images with varying resolution and distance.

The YOLOv5 has potential as a detector for automatic collection purposes of
field images. However, the amount of event splits would have to lessen with
more training images, otherwise finding a more stable type of lightweight model
for videos would be recommended. Here, event split is when the model stops
detecting a present insect for a brief moment.

6.3.3 Field detection future use

TensorFlow Light [40] was considered for deploying YOLOv5 or another light-
weight model, such as MobileNet [19], to a mobile device for detection tests in
field or for taking images of traps each time a new detection is made. This is be-
cause a trap could be suddenly filled with flies in a short amount of time, making
it hard to read detections. Especially for sticky traps in windy conditions, where
the insects would stick in place in contrast to cup traps where the insects could
be moved around to better positions. Also, rape beetles would often come visit
the cup on the edges, alone or two at a time, when it was standing empty on the
side or put upside down. Therefore images of when insects visits empty cups
could perhaps be collected.
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6.3.4 Work in a wider context

When placing cameras in fields the integrity of others must be protected. The
camera should be placed with this in mind. For cup images this is easier since
the camera often face the trap from above. A possible environmental impact of
using camera systems instead of physical visits is reduced travelling and more
accurate measures against pests. In the future, if pests could be automatically
detected on plants along with the damage they do, and perhaps even the benefi-
cial insects interaction with them, it could aid in understanding the relationships
between them better. In that way, if the model implemented can handle multiple
purposes, the yearly inventory of pests in fields could aid in data collections for
environmental and agricultural research.
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Conclusion

In this chapter, the conclusions made from the discussions of the results are pre-
sented as well as the prospects of future work.

7.1 Conclusion

The sliding window approach with HOG based SVM, combined with check size
and trap detection, shows promise to be useful for developing an automatic warn-
ing system for pests caught in traps. Compromises were made, regarding what
state of the pests to prioritize for detection. The best combination found in this
thesis was to find trap and crop to detection using YOLOv5, and then based on
size of the cropped image set new thresholds for check size.

A model trained using a RBF kernel with only positive rape beetles and neg-
ative patches was the most inclusive for rape beetles in high resolution camera
images and therefore deemed to have most potential if more positive and negative
patches are added, see Figure 6.4. Similar for models trained with a LinearSVC
kernel, for detection of rape beetles with step size 7 on Hunter 3G images in
Figure 6.6 and for detection of fungus gnat in smartphone images in Figure 6.7.
They were deemed to have potential with further development.

However, more testing is needed for refinement of check size to improve per-
formance. The HOG based SVM models need to be reinforced with more train-
ing images to improve accuracy, especially more rape beetles and fungus gnat
as positive patches and more flea beetles, light coloured flies and background as
negative patches.

Mask R-CNN and YOLOv5 both proved their potential as rape beetle detectors
in field images. YOLOv5 showed multi-class detector potential with distances
customized with regards to size of insect. No matter what use, it is deemed bene-
ficial to add more training images to all Mask R-CNN and YOLOv5 models.

41
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7.2 Future work

Testing the sliding window with check size approach with other classifiers and/or
adding more data to datasets could be of interest to see if the performance can
increase. Building on this concept, carrot root fly pests and leaf hoppers are
deemed worthwhile to test for detection. To overcome the difficulties of detecting
insects closely clustered, a machine learning model that sees larger parts of or the
whole image instead could be pursued and compared.

It is deemed worthwhile to continue to pursue more field images, 64MP for
larger insects and Macro 5MP for smaller pests, and build a large scale multi-
class detector using a model similar to YOLOv5. If accuracy can be improved
and event splits lessened with more training, a YOLOv5 similar model could have
potential use on video stream on a field camera to help automate the collection
of images through extraction of frames. Using YOLOv5 or another CNN model
for detection of insects in trap, empty or not, could be worthwhile to pursue.
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A
Additional material

A.1 Extended pest chart

An extended pest chart with translations of pest names, see Table A.1.

A.2 Additional images dataset

An overview of possible negative and positive images included into the datasets,
see Figure A.1.

A.3 Additional Results

In Figure A.2 some result of Mask R-CNN trap detection background removal
can be seen. In Figure A.3 the models performance for SWSH on test images
are shown without size check. Results on additional field images can be seen in
Figure A.4.

45
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Table A.1: Pest information chart [5, 6, 21]. TL = Threat level. Since some
pests are a larger threat to certain crops depending on the region, the region
is denoted (M) for the middle part of Sweden and (S) for the south part of
Sweden following crop names. SP = Sightings probable from. The * denotes
those crops that could suffer the most damage.

Pest information chart
Pest Latin name Swedish

name
TL Plants infested SP

Rape beetle Meligethes
aeneus

Rapsbagge 3 Oilseed plants
(spring and
autumn rape*)

April

Cabbage-
stem flea
beetle

Psylliodes
chrysoce-
phala

Rapsjordloppa 2 Oilseed plants,
cruciferous
vegetables

June,
Au-
gust

Bean (seed)
beetle

Bruchus rufi-
manus

Bönsmyg 5 Legumes (field
beans*)

June

Carrot root
flies

Chamaep-
sila rosae /
Psila rosae

Morotsfluga 3 Carrots (S),
parsnip (M)

May

Leafhopper Eupteryx at-
ropunctata

Potatisstrit 5 Potatoes June

Bird cherry-
oat aphid

Rhopalosi-
phum padi

Havrebladlus 3 Oats, spring
wheat, spring
grain

May

Grain
aphid

Sitobion ave-
nae

Sädesbladlus 3 Spring wheat,
spring grain

May

Pea aphid Acyrthosi-
phon pisum

Ärtbladlus 2 Legumes May

Black bean
aphid

Aphis fabae Bönbladlus 2 Legumes, sugar
beets, potatoes

June

Frit fly Oscinella
frit

Fritfluga 3 Oats, spring
wheat, sweet
corn

May

Fungus
gnat

Sciaridae Sorgmygga 2 Young plants -

Blue stem
weevil

Ceutor-
hynchus
sulcicollis

Blygrå rapsvivel 1 Oilseed plants May

Weevil Fyrtandad
rapsvivel

1 Oilseed plants May

Pea leaf
weevil

Sitona linea-
tus

Randig
ärtvivel

1 Legumes June
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(a) Rape
beetles H3G.

(b)
Negative H3G.

(c) Weevils. (d)
Flea beetles.

(e) Cup,
negative.

(f) Fungus gnat. (g) Sticky trap, nega-
tive .

Figure A.1: Example of positive and negative images in the datasets. Some
of the crops in c)-e) are from original images provided by Jordbruksverket.

(a) (b)

Figure A.2: Mask R-CNN background removal on cup traps. Two of the
images were cropped to detection. The a) are examples of passing results.
The H3G image in b) needed a rerun.
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(a) LinearSVC H3G, stepsize 3.

(b) LinearSVC. (c) RBF.

Figure A.3: Examples of the different trap results when no area or density
checks are performed. However, the SWSH has a computational stop imple-
mented as it reaches the white information bar at the bottom in H3G image
a). Otherwise it would also detect the letters within that area. The detections
within each image are 1163 in a), 14 in b) and 179 in c).
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(a) BB1_Rape beetle test on the same video as BB3, 6
seconds. No false positives. The only rape beetle was
detected whenever video in focus, however 13 event
splits occurred.

(b) BB3 test on the same video as BB1_Rape bee-
tle, 6 seconds. 10 FP (often caused by same spot on
plant/ground), and 4 event splits. The only rape beetle
was briefly detected.

(c) BB1_Rape beetle. Example of how wrong detections
could occur when video out of focus for flower, and how cor-
rect detections were more probable when video focused.

(d) BB3. Example of handling occlusions for bumble-
bees or different distances. Detection of thrips is possi-
ble, although wrongly classified since no class. Also a
TN of a background, a TP for a rape beetle, and some
FP of an aphid and weevils.

Figure A.4: Example of detection in video stream with YOLOv5 using one
class rape beetles, BB1_Rape beetle, or 6 classes, BB3. Rape beetles, bum-
blebee, weevil (RVirvel), pea leaf weevil (AVirvel) and aphids, see A.1 for
translations.
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